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Imputation of Missing Values in Economic and
Financial Time Series Data Using Five

Principal Component Analysis
Approaches

Chisimkwuo John1, Emmanuel J. Ekpenyong2 and Charles C.Nworu3

This study assesses five approaches for imputing missing values. The evalu-
ated methods include Singular Value Decomposition Imputation (svdPCA),
Bayesian imputation (bPCA), Probabilistic imputation (pPCA), Non-Linear
Iterative Partial Least squares imputation (nipalsPCA) and Local Least Square
imputation (llsPCA). A 5%, 10%, 15% and 20% missing data were created
under a missing completely at random (MCAR) assumption using five (5)
variables: Net Foreign Assets (NFA), Credit to Core Private Sector (CCP),
Reserve Money (RM), Narrow Money (M1), Private Sector Demand Deposits
(PSDD), from 1981 to 2019 using R-software. The five imputation methods
were used to estimate the artificially generated missing values. The perfor-
mances of the PCA imputation approaches were evaluated based on the Mean
Forecast Error (MFE), Root Mean Squared Error (RMSE) and Normalized
Root Mean Squared Error (NRMSE) criteria. The result suggests that the
bPCA, llsPCA and pPCA methods performed better than other imputation
methods with the bPCA being the more appropriate method and llsPCA, the
best method as it appears to be more stable than others in terms of the pro-
portion of missingness.
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1.0 Introduction

Working with financial time series does not require the data to have missing ob-

servations over a long period of time. This is because the statistical properties

of the series are preserved by its sequence using such a complete data. Financial
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time series such as the financial stock market data, for various reasons, frequently

contain missing values. The reason may be attributed to markets being closed for

holidays, inability to capture financial data in the specified period of time, record-

ing errors etc. Such missing data make it difficult to predict future stock prices

using the most up-to-date market information (Sohae, 2015). Thus, if there is a

disturbance in the sequence of the series in terms of observations, the problem of

missing data arises, hence there is an urgent need to handle such problem. In time

series, each record is unique; dropping it would leave us with a series with holes,

unusable for many purposes (Tusell, 2005).

This is in contrast to one of the assumptions of the Box-Jenkins method which

entails that the series be equally spaced over time and that there are no lost values

in the series (Yaffee & McGee, 1999). If missing data exists either in a univariate

or multivariate series, then carrying out an analysis with the series may not be

possible (Yaffee & McGee, 1999). In addition, the time series plot will have a lot

of holes and will look truncated. Therefore, in order to carry out an objective and

‘neat’ time series analysis, there is need to estimate (impute) and plug back those

missing observations.

Vital and valuable information will be lost by discarding such observations or re-

moving the corresponding cases when the number of missing values in the dataset

is large. This may lead to selection bias. Similarly, the correlation structure of a

dataset may not be captured if the decision is to plug missing values with zeros or

with mean value over the samples. This method is far from optimal and the series

properties may seriously be affected (Kerkri et al., 2015).

A more advanced statistical models have been developed that can effectively im-

pute missing data using information in the non-missing part of the dataset. But

this is subject to the type of data, percentage of missing data, the missing data

mechanism, correlation structure of the data, the distribution of missing entries in

the data and the size of the data. One of such procedures is the principal compo-

nent analysis (PCA) approaches (Armina et al.., 2017; Gautman and Ravi, 2015).
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The works of Armina et al. (2017) have further stated how type of data affects the

choice and performance of imputation models. They added that global methods

such as svdPCA, bPCA, etc perform better on data sets with low entropy (data sets

with low variability and less information and error), while local methods such as

llsPCA, K-Nearest Neighbour (KNN), etc, perform better with high entropy data

sets (sets with high variance with more information and error or noise). Moreover,

data that obey some of the assumptions of imputation methods may cause such

methods to be adopted in order to reduce bias and improve performance of such

methods. In addition, methods that perform better when categorical data are used

may not perform equally when continuous or interval data are used (see Schmitt

et al., 2015).

In the aspect of the effect of percentage of missingness on the kind of imputation

method to be adopted, several authors have made significant contributions to this

case. Little and Rubin (2002) emphasized that if the proportion of values missing

is small, then such missing values should be ignored in analysis, as it would not

have a significant effect on the results of the analysis. They further suggested 20%

or less percentage of missingness as acceptable, although there does not appear

to be a clear definition of how much data can be imputed. Moreover, Eekhout

et al.(2014), in their study, showed that when a large percentage of subjects had

missing values greater than 25%, multiple imputation methods performed better

in multi-item variables.

When dealing with missing data, Siddique et al.(2012) stated that special concern

must be given to the process that gave rise to the missing data, referred to as

missing data mechanism. Most methods for generating Multiple Imputations as-

sume the missing data mechanism is ignorable, where the probability that a value

is missing does not depend on unobserved information such as the value itself (Sid-

dique et al., 2012). They further stated that, when data are non-ignorably missing,

the probability that a value is missing does depend on unobserved information.

Closely related to the concept of ignorability are the missing data mechanism tax-

onomies -: missing at random (MAR)’, ‘missing completely at random (MCAR)’,

and ‘not missing at random (NMAR).’ MAR requires that the probability of miss-
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ingness depends on observed values only. MCAR requires that the probability of

missingness does not depend on either the observed values or the missing data and

MNAR requires that the probability of missingness could depend on the value of

the variable. Schmitt et al. (2015) and Dray and Josse (2015) have shown that

the performances of the multiple imputation methods are affected by the missing

data mechanism. They also stated that advanced multiple imputation methods

are adopted under MAR and MCAR mechanism.

The correlation structure of the data is also a major factor in determining the

performance of some multiple imputation methods. The works of Dray and Josse

(2015) clearly indicated nipalsPCA and mean methods of imputation poorly per-

formed when all variables considered were highly correlated, while the Iterative

PCA (IPCA) performs better when correlation structure between variables are

stronger.

For the effect of sample size on the performances of multiple imputation meth-

ods, the study of Schmitt et al. (2015) indicated that among the various methods

compared, Fuzzy K-Means (FKM) became more robust with a more significant

advantage than bPCA when applied to small data sets, but for large data sets

they perform almost equally.

Schmitts et al. (2015) confirmed that missing data introduce an element of am-

biguity into data analysis. They affect properties of statistical estimations such

as means, variances, percentages and parameters, resulting in a loss of power and

misleading predictions, inferences and conclusions. This is why missing values in

financial time series data could result in misleading inferences and conclusions af-

ter analysis. It is also of note that these variables differ in their distributions from

country to country and earlier stated distributions of variables affect the method

to be used in imputing any form of missing values. In view of the importance of

these financial indicators or variables in the financial and monetary sector devel-

opment in Nigeria, there is a dire need to compare some PCA imputation methods

in order to ascertain the appropriate methods that are suitable with the Nigerian

financial and monetary variables considered in this work, since they have distribu-
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tions different from other countries’.

The objective of this work is to compare some PCA imputation procedures namely;

Singular Value Decomposition (svdPCA) imputation, Probabilistic PCA (pPCA)

imputation, Bayesian PCA (bPCA) imputation, Non-linear Iterative Partial Least

Squares PCA (nipalsPCA) imputation and Local Least Squares PCA (llsPCA)

imputation with a view to determine the best performed PCA imputation method

unlike the traditional methods (listwise deletion method, mean method etc) pro-

posed by other authors which does not take into cognizance the whole data in the

matrix simultaneously.

The remaining sections of this study are designed as follows: section two shows

the review of related works; section three describes the method of data analysis;

section four presents the analysis of results, and lastly section five is the conclusion

which discusses the policy implications of this paper.

2.0 Literature Review

2.1 Theoretical Framework

Principal Component Analysis (PCA) is defined by Everitt and Dunn (1999) as a

method that reduces the dimensionality of a set of multivariate data. This is done

by partitioning a set of uncorrelated variables which is a linear combination of the

original dataset. The derivation of the new variables are arranged in descending

order of importance where the first principal component accounts for a greater

variation in the original data while the remaining variation is accounted by the

second component.

Let the random vector XT = [X1, X2, ..., Xp] have the covariance matrix
∑

with

eigen values λ1 > λ2 > ... > λp > 0

Consider the equation

Yi = aTi X = ai1X1 + ai2X2 + ...+ aiiXi (1)
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Using the formula
∑

Yp
= cov(Yp), we obtain

var(Yi) = aTi
∑

ai, i = 1, 2, ..., p (2)

cov(Yi, Yk) = aTi
∑

ak, i, k = 1, 2, ..., p (3)

Wichern and Johnson (2007) states that principal components are uncorrelated

linear combinations Y1, Y2,. . . , Yp whose variances are as large as possible. Let
∑

be the covariance matrix associated with the random vector XT = [X1, X2, ..., Xp]

Let
∑

have the eigenvalue-eigenvector pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where

λ1 > λ2 > ... > λp > 0. Then the ith principal component is given by

Yi = eTi X = ei1X1 + ei2X2 + ...+ eipXp, i = 1, 2, ..., p (4)

with these choices

var(Yi) = eTi
∑

ei = λi, i = 1, 2, ..., p (5)

cov(Yi, Yk) = eTi
∑

ek = 0, i 6= k (6)

If some λi are equal, the choices of the corresponding coefficient vectors, ei, and

hence Yi are not unique.

Ilin and Raiko (2010) stated that PCA can be derived from a number of starting

points and optimization criteria. The most important of these are minimization

of the mean square error in data compression, finding mutually orthogonal direc-

tions in the data having maximal variances and de-correlations of the data using

orthogonal transformations. They further added that in the data compression for-

mulation, PCA finds a smaller dimensional linear representation of data vectors

such that the original data could be reconstructed from the compressed represen-

tation with the minimum square error.

Keet al. (2018) noted that PCA-based approaches have at least three merits in

the domain of missing data imputation. First, it does not require strict assump-

tions such as the daily similarity, no continuous incompleteness of data points, and

a large database. Second, the principal components remove the relatively trivial
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details and make sure that only the major information is used for constructing the

probabilistic distribution of the latent variables. Third, it simultaneously achieves

the high imputing accuracy, acceptable speed, and robustness to abnormal data

points in a broad range of missing data imputation issues.

Ke et al. (2018) also added that PCA-based missing data imputation methods for-

mulate the relationship between original variables and latent variables in a PCA-

based form, and then solve the problem with EM iterations. In this method, the

probability distribution of the compressed information based on the original ob-

served data is first estimated, and then reconstructing the missing data by the

compressed information, which can also be viewed as latent variables.

Suppose that we have m samples of d × 1 original vectors y1, y2, y3, ..., ym, which

can be formulated as a function of c× 1 dimensional latent variables:

yj = Wzj + µ (7)

where W is a d× c matrix, zj is a c× 1 vector of principal components (i.e latent

variables) and µ is a d×1 bias term; for the Local Least Squares PCA (llsPCA), a

straightforward method to determine the latent variables is to minimize the mean

square error between the reconstructed yij attained from latent variables and the

original observed yij :

min
∑
i,j∈o

(yij − ŷij)2 (8)

ŷij = WT
i zj + µi =

c∑
k=1

wikzkj + µi (9)

where yij means the ith variable of the jth sample of the observed data, while ŷij is

the reconstruction of the data element yij .O is the set of indexes i, j. zkj means

the kth latent variable of the jth sample of the latent space.

However, Friedland et al. (2008) stressed that the optimization problem in (8) can

be solved by a least squares algorithm which updates parameters W, µ and zj .

Ke et al. (2018) further said that the llsPCA method might easily suffer from the
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over fitting issue, especially when the missing ratio is high, since the objective is

to minimize the mean square error; thus the method may generate unreasonable

large parameters to fit well observed data and lose the generalization ability.

Shi et al. (2013) and Ke et al. (2018) explained the method of Probabilistic PCA

(pPCA) as a natural solution to the over-fitting problem of the Local Least Squares

PCA (llsPCA) by adding a regularization term in the objective function to penalize

unreasonably large parameters. Another solution is altering the transformation

between the original data and latent variables to a probabilistic form, from which

the regularization term is naturally derived. pPCA is derived by adding an error

or isotropic term to equation (7):

yj = Wzj + µ+ εj (10)

where zj , εj follow the normal distributions, i.e., zj ∼ N(0, 1), εj ∼ N(0, vI).

There are three groups of parameters, i.e., W, µ and v which can be estimated by

the EM algorithm (Bishop, 1999).

Probability PCA (pPCA) is sometimes sensitive to the initialization parame-

ters W, µ and v. To overcome this defect, an assumption of the Gaussian

prior probabilistic distribution was made to parameters and which formulates the

Bayesian PCA (bPCA).W and µ follow a normal distributions: µ ∼ N(0, vµI),

wi ∼ N(0, vw,kI) where vµ, vw,k are hyperparameters that can be updated, (Ke et

al., 2018).

Yoon, et al., (2007) showed that the methods of imputation earlier described have

the limitation of taking care of data with multi-collinearity and outliers especially

when they exist with small sample size. To overcome this problem, they made

use of the Robust PCA (rPCA) method. Robust PCA (rPCA) makes use of the

principal components, instead of the original data, during least squares estimation

of parameters.

Another imputation method, the Non-linear Partial Least Squares PCA (nipal-

sPCA) method bridged the gap between the use of standard linear PCA by meth-
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ods earlier reviewed and the non-linear generalization of standard linear PCA. It

further introduced the use of Partial Least Squares estimation method for estimat-

ing the parameters involved in the imputation model, (Ping,et al., 2014).

2.2 Empirical Literature

Schmitt et al. (2015) compared six methods of imputing data namely: Mean, K-

nearest neighbor (KNN), Fuzzy K-means (FKM), Singular Value Decomposition

(SVD), Bayesian principal component analysis (bPCA) and Multiple imputation

by chained equations (MICE) using four different reference data-sets split into two

groups of various sizes: small dataset and large dataset, under a missing completely

at random (MCAR) mechanism. Performance accuracy were measured based on

Root Mean Square error (RMSE), Unsupervised Classification Error (UCE) and

Supervised Classification Error (SCE). They concluded that the bPCA and FKM

performed better than the other four imputation methods. They further stated

that FKM outperformed bPCA when small datasets were considered. On the

other hand, they emphasized the effect of the type of data on the performance of

the imputation methods. They concluded that theirs were matrices of numerical

values (biological data) and that they did not consider longitudinal and nominal

data. In this paper, we seek to apply it to financial and economic data, which are

known to be volatile.

Juha (2011) considered two methods of handling missing values: Robust PCA im-

putation algorithm and the nearest neighbor method. The performance of these

methods varied for the simulated datasets and real world forest datasets. He con-

cluded that the nearest neighbor method seems to be more useful for real data

but this depends on the correlation structure of the data. He further added that

Robust PCA performed better where the data have outliers and unknown distribu-

tions. He emphasized that the performance of other methods could be influenced

by outliers and the distribution of data.

Pedreschi et al. (2008) worked on different methods of handling missing values.

They considered three approaches namely; (1) Nonlinear Iterative Partial Least

Squares (nipalsPCA) imputation (2) K-nearest neighbor and (3) the Bayesian prin-
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cipal component analysis (bPCA). They applied these techniques to two sets of

data. From the three tested methods of handling missing values, they concluded

that the bPCA imputation approach proved to be the most consistent. They also

added that for the parametric methods of imputing data to be efficient in perfor-

mance, the normal assumptions of normality and homoscedasticity must be met.

Brock et al. (2008) evaluated eight imputation methods on nine different datasets

of various types and sizes; which includes multiple exposures, time series and mixed

type of data. The objective of their work was to assess the performance of the

estimation methods under different conditions and to recommend appropriate use

of these methods. These methods were compared in terms of percentages of miss-

ing data and the imputation accuracy was measured using the root mean squared

error (RMSE). Their results showed that the bPCA outperformed other methods

on data with strong correlation structure.

Yoon et al. (2007) applied the robust PCA (rPCA) methods to impute microarray

data and compared it with bPCA, Local Least Squares imputation (llsimpute)

and K- Nearest Neighbour (KNN). Using the normalized root mean squared error,

they observed that rPCA outperformed other methods, but competed favourably

with bPCA. They further added that bPCA performed based on the number of

principal components and the type of data. Moreover, the bPCA is computation-

ally expensive in terms of time because of the EM algorithm involved.

Ping et al. (2014) compared eight imputation methods based on accuracy and

stability. The methods were svdPCA, pPCA, bPCA, Nonlinear PCA (NLPCA),

nipalsPCA, least squares imputation (llsimpute), MICE and Multiple imputation

methods. They applied them on 20 clinical features – age, gender, limour num-

ber, the size of the maximal tumor, liver cirrhosis, Barcelona Clinic Liver Cancer

Staging Classification and 14 Serum Laboratory tests. From their analysis, they

observed that bPCA may not be a suitable method to impute missing values for

developing predictive model, as it could not achieve better performance than the

complete data set.
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Most of these works applied these imputation methods on medical and biological

data, which are mostly count data and in some cases measurable; but we seek

to apply different PCA methods on some financial or economic time series data

of Nigeria (which change in terms of volatility and distributional structures from

country to country) to evaluate their performances.

3.0 Methodology

3.1 Data Source

Data from quarterly monetary aggregates (N’ billion) from first quarter of 1981

to first quarter of 2019 was obtained from Central Bank of Nigeria (CBN). Five

variables which include Net Foreign Assets, Credit to Core Private Sector, Re-

serve Money, Narrow Money, and Private Sector Demand Deposits were used for

the study. For the purpose of this work, values were made to be missing at ran-

dom under an MCAR assumption at different percentages (5, 10, 15, 20) from the

original dataset, using R-statistical package. Furthermore, the missing values were

estimated using various PCA imputation techniques to recover the missing values

referred as imputed data. Finally, the imputed data obtained was compared to

their corresponding observed values.

3.2 PCA Imputation Approach and Model Specification

Five imputation methods used in this work are briefly discussed below. The meth-

ods assume that the data used satisfy the principal component analysis assump-

tions.

3.2.1 Singular Value Decomposition (svdPCA) Imputation

The SVD imputation proposed by Troyanskaya et al. (2001) imputes missing data

by a linear combination of a set of mutually orthogonal patterns to obtain an

estimated value. In singular value decomposition, the m × n matrix, m > n is

expressed as a product of three matrices

Y = U
∑

V T (11)

where U= m ×m orthogonal matrix V = n × n orthogonal matrix
∑

= m × n
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diagonal matrix.

The solution of the imputed missing value is improved iteratively until a total

change in the matrix falls below a prescribed threshold, usually 0.01. This ap-

proach is known as the expectation-maximization (EM) approach. SVD impute

seems to perform better on data with relatively high proportion of missing data,

say 10% and above.

3.2.2 Probabilistic PCA (pPCA) Imputation.

As an extension to the traditional principal component analysis (PCA), pPCA

is deduced with hidden variables by Gaussian model (Gaussian latent variable

model). The generative model of pPCA as proposed by Tipping & Bishop (1999)

is given by

ti = Wxi + µ+ εj (12)

where εj is d-dimensional vector of the noise,

µ =

N∑
k=1

tk

N
isthesamplemean

W is d× q-dimensional parameter matrix and

x ∼ N(0, Iq), ε ∼ N(n0, σ2Id)

PPCA works well on data with proportion of missing values between 10% and

15%. If the missing number of data exceeds this threshold, then the solution is

likely not to converge.

3.2.3 Bayesian PCA (bPCA) Imputation

Similar to probabilistic principal component analysis (pPCA), the likelihood of an

imputed value is obtained with the combination of the expectation maximization

approach and the Bayesian estimation method (Stacklies et al., 2007). The algo-

rithm seems to be tolerant to relatively high proportion of missing data say, 10%.

Oba et al. (2003) highlighted the three processes involved in estimating missing

values using the bPCA. They are: Principal Component (PC) regression, Bayesian

estimation and an expectation-maximization (EM)-like repetitive algorithm. The
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posterior of the missing data based on the bPCA according to Oba et al. (2003)

is given by:

q(Y miss) =

∫
p
(
Y miss

∣∣Y obs, θ
)
q(θ)d(θ) (13)

which corrreponds to the Bayesian PC regression.

3.2.4 Non-Linear Iterative Partial Least Squares (nipalsPCA) Im-

putation.

Another method of imputing missing data is the nipalsPCA imputation method.

The nipalsPCA uses the elements of the principal component analysis of a finite

dimensional random vector through a Jacobi-like iterative method (Tenenhaus,

1998). Here, NIPALS provides not only an estimation of principal factors and

components, but also by the mean of the data reconstitution formula, an imputa-

tion method for missing data. The NIPALS has the advantage of working well in

MAR cases (Cristian et al., 2005). The NIPALS algorithm is easy to implement

in standard programming languages.

Here, we introduce the NIPALS algorithm in the multivariate finite dimensional

case. Let Y = (Y1, Y2, . . . , Yp)
T be a random vector of dimension p, p ≥ 1, such

that E(Xi) = 0, ∀iε1, . . . , p. The expression of the vector Y in terms of princi-

pal components and principal factors is a well-known result in multivariate data

analysis (Escoufier, 1970). let

Y =

q∑
h=1

ξhUh (14)

where q = dimL2(X), {ξh}h=1,2,...,q and {Uh}h=1,2,...,q are the principal compo-

nents (random variables) and the principal factors of the principal analysis of X.

It is worthy to note that, nipalsPCA is tolerant to small proportions of missing

data, in most cases not more than 0.05. Also, for large data matrices or matrices

that have a high degree of column collinearity, the orthogonality of the matrix is

lost due to machine precision accumulated in each iteration step.
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3.2.5 Local Least Squares PCA (llsPCA) Imputation

The llsPCA proposed by Kim et al. (2005) is based on the linear combination of the

k-nearest neighbors of a missing dataset. The llsPCA is built on the Pearson corre-

lation coefficient rij (Pearson, 1894) which measures the strength of variables. The

strength of the variables is measured as the absolute value of the distance between

the variables. Where there is a missing value in the first position of a variable, say,

g1, yij between two vectors g′i = (gi2 , . . . , gin)T and g′j = (gj1, . . . , gjn)T becomes

yij =
1

n− 1

n∑
k=2

(
gik − gi
σ1

)(
gjk − gj
σj

)
(15)

where ḡi and ḡj are the mean values of g′i and g′j respectively and is the standard

deviation of the values. In estimating missing values, the llsPCA performs better

as the percentage of variables increases (Kim et al.; 2005).

3.3 Measures of Performance

The performance of PCA imputation methods were measured using the following

methods:

1. Mean Forecast Error (MFE)

2. Root Mean Squared Error (RMSE)

3. Normalized Root Mean Squared Error (NMRSE)

3.3.1 Mean Forecast Error (MFE): The MFE according to Adhikari and

Agrawal (2013) is given by

MFE =
1

n

n∑
i=1

(yactual − yimputed) (16)

yactual are the original values of the variables before they were made to miss, while

the yimputed are the values imputed in places of the missing values.

It is a measure of the average deviation of forecasted values from actual ones. It

shows the deviation of error and thus also termed as the Forecast bias. A zero

MFE does not mean that forecasts are perfect, that is, contain no error, rather

it only indicates that forecasts are on proper target. It depends on the scale of
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measurement and also affected by data transformations.

3.3.2 The Root Mean Squared Error (RMSE): The RMSE (Adhikari

and Agrawal, 2013) is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(yactual − yimputed)2 (17)

It is a measure of average squared deviation of imputed values. RMSE -does not

provide any idea about the direction of overall error. It gives an overall idea of

the error occurred during forecasting. RMSE is a good measure of overall forecast

but it is sensitive to change of scale and data transformation.

3.3.3 The Normalized Root Mean Squared Error (NRMSE): The

NRMSE(Adhikari and Agrawal, 2013) is a balanced error measure and is very

effective in judging accuracy of model. NRMSE is given by

NRMSE =

√
mean[(yactual − yimputed)2]

variance[yactual]
=

√√√√ 1

nσ2actual

n∑
i=1

(yactual − yimputed)2

(18)

From the formula above, the variance of the actual value is calculated from the

whole dataset and n is the number of samples in each variable in the whole data in

the matrix. As the NRMSE value tends to 0.00, the more accurate the imputation

method. But when the imputation method is too poor or when the noise associated

with the data is too large, the NRMSE approaches to 1.00. NRMSE is not affected

to change of scale and data transformations.
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4.0 Analysis of Results

Table 1: Predictive accuracy of the five PCA imputation methods using the

Mean Forecast Error at different levels of missingness

Table 1 shows the performance indicators of the five PCA imputation methods

based on the mean forecast error (MFE) at different percentage of missing data.

The MFE indicators show the direction of the imputed values. The negative values

indicate under-estimation while the positive values indicate over-estimation.

At 5% missingness, the nipalsPCA performed better than other imputation meth-

ods with its MFE value of 1.58 being closer to zero than other imputation methods;

this was followed by the svdPCA, llsPCA, bPCA and pPCA with MFE values of

-2.16, -5.45, -9.78 and -10.18 respectively. For 15% missingness, the llsPCA per-

formed better than other imputation methods with its MFE values of 27.28, while

in 20% missingness, the svdPCA performed better with MFE of -21.19. They

were followed by nipalsPCA in both missingness with MFE of 37.72 and 27.28 re-

spectively. However, at 10% missingness, the llsPCA performed better than other

imputation methods with its MFE value of 17.38 being closer to zero than other

imputation methods; this was followed by the bPCA, pPCA, svdPCA and nipal-

sPCA with MFE values of 21.22, 21.23, 49.05 and 70.26 respectively.

Generally, the llsPCA was observed to show consistency across the levels of miss-

ingness using the MFE except at 5% and 20% missing level where the svdPCA

performed well.

66



CBN Journal of Applied Statistics Vol. 10 No. 1 (June, 2019) 51-73

Table 2: Predictive accuracy of the five PCA imputation methods using the

Root Mean Square Error at different levels of missingness.

Table 2 shows the performance indicators of the five imputation methods based on

the root mean square error (RMSE) at different percentage of missing data. The

smaller the performance indicators, the more accurate the imputed values of the

data.

Table 3: Predictive accuracy of the five PCA imputation methods using the

Normalized Root Mean Square Error at different levels of missingness.

For RMSE comparative measure, llsPCA performed better than other imputation

methods in 15% of missingness considered with RMSE of 397.79, while pPCA took

the lead for 10% missingness with RMSE of 368.21. For 5% and 20% missingness,

llsPCA performed better with RMSE of 112.87 and 358.14 respectively. This was

followed by bPCA. Therefore, using the RMSE as a means of performance measure,

the llsPCA and bPCA also showed consistency across all the levels of missingness,

but the pPCA performed better at 10% missingness.

The Normalized Root Mean Square Error (NRMSE) performance measures of the

different imputation methods shown in Table 3, at different percentages of missing
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data indicates that at 5% and 15% missingness, the llsPCA performed better than

other imputation methods with their NRMSE values of 0.025 and 0.089 in each

case. It was followed by bPCA and pPCA with the same NRMSE of 0.032 and

0.099 respectively. For 20% missingness, the llsPCA and bPCA performed equally

better than other imputation methods with NRMSE value of 0.080. However, in

10% missingness, bPCA and pPCA performed equally better than others, which

was followed by llsPCA. For Figure 1, the nipalsPCA shows deviation from zero

indicating forecasts are out of point. The pPCA diverged from zero when the

proportion of missing values increased. Also, the svdPCA, llsPCA and bPCA

showed some level of consistency around zero indicating the imputed values are on

point.

Figures 1, 2 and 3 show the pattern of the performance of the different PCA

methods based on the MFE, RMSE and NRMSE respectively. We can see that

the three plots show the same behavior in pattern. The figures show that the

performance of the methods largely depends on the percentage of missing values

(5% to 20%) where a smaller value indicates a reliable estimation. Obviously, the

performances deteriorated when the missing values increased and later decreased

at 20% missingness for llsPCA, bPCA and pPCA. The llsPCA, bPCA and pPCA
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outperformed other imputation methods. The nipalsPCA was the less effective

imputation method where the difference was more pronounced when compared

with other methods. The second worst method is the svdPCA.

5.0 Conclusion and Policy Implications

In this paper, we performed a comparison of five principal component analy-

sis (PCA) imputation methods using the Nigeria quarterly monetary aggregates.

First, we artificially created missing values from the original series under the as-

sumption that it is missing completely at random (MCAR). The five methods

include: singular value decomposition imputation (svdPCA), bayesian imputa-

tion (bPCA), probabilistic imputation (pPCA), non-linear iterative partial least

squares imputation (nipalsPCA) and local least squares imputation (llsPCA). The

choice of the best performed imputation method requires the consideration of three

performance measures namely: mean forecast error (MFE), root mean square er-

ror (RMSE) and the normalized root mean square error (NRMSE). Most attention

have been paid on the RMSE and NRMSE for measuring imputation accuracy but

the use of the MFE has been undermined. Hence, we considered the MFE to

determine the direction of the imputed value.

There was a deviation in the performance of these methods at 10% missingness

using MFE measure in Table 1. Here, the svdPCA performed better than other

methods and this may be due to the satisfaction of the normality assumptions of

svdPCA. It may also be due to weakness of the MFE as a measure of performance,

as such result did not indicate using othe performance measures. Also, in Table

2, For 5% and 20% missingness, llsPCA performed better with RMSE. This was

followed by bPCA.. The performance of llsPCA may be a result of the variance

structure of the data at 10% missingness as stated by Armina et al. (2017) that

llsPCA performs well with data of high entropy data sets (sets with high variance

with more information and error or noise) at 5% and 20% missingness. bPCA

performed better than other imputation methods in 15% of missingness, while

pPCA took the lead for 10% missingness using RMSE performance measure, but

the difference is insignificant. This may be due to the fact that the normality and
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homoscedasticity assumptions of pPCA were met in that data, (see Juha, 2011

and Yoon et al. 2007). From here, one could conclude that llsPCA, bPCA and

pPCA may be applied to economic and financial data under the percentages of

missingness. It is also worthy to note that in the literature, many authors have

proposed different methods of imputation methods based on the correlation struc-

ture of data, type of data, distributions of data, type of missing mechanism, size

of data and the proportion of missingness. Therefore, one can say that there is no

general best method of imputation to be used.

In this paper, the three performance measures were consistent across the five impu-

tation methods as shown in Figures 1, 2 and 3. The llsPCA, bPCA and the pPCA

proved to be best performed method with the pPCA performance decreasing as

the proportion of missing values increased. The significant performance of llsPCA

may be due to a reason stated by Armina et al. (2017) that llsPCA performs well

with data of high entropy data sets (sets with high variance with more informa-

tion and error or noise). So, it is a well-known fact that financial data exhibit

high level of volatility which brings about high variance and error. Also, the good

performance of the bPCA was reported by Schmitt et al. (2015) in their com-

parison study where the imputation method confirmed better performance than

other methods they used. But they did not compare their methods with other

PCA imputation methods. The other methods they applied did not consider the

correlation structure of the dataset. In conclusion, we recommend the llsPCA and

bPCA imputation methods for estimating missing values in a financial time series

data bearing in mind the proportion of missing values of the data. This may be due

to the correlational structure of the financial series or the distributions exhibited

by the data. Other methods, such as pPCA and svdPCA may also be recom-

mended for imputing financial data in Nigeria, as they have good performance

abilities based on their MFE, RMSE and NRMSE. The policy implication of the

finding is that observations may be missing when predicting the Gross Domestic

Product of Nigeria with respect to these variables; Net Foreign Assets, Credit to

Core Private Sector, Reserve Money, Narrow Money, and Private Sector Demand

Deposits using the time series or the regression approach. This study is useful for

policy makers with information on the best method of imputation when it is clear
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that there are missing observations in the dataset. It is obvious that the llsPCA

and bPCA methods are preferred to the competing methods as observed in the

results. These imputations would help policy makers to conveniently carry out

economic analyses on the economic variables under consideration, with complete

data sets. The predictions or inferences made on the basis of the analyses would

further assist policy makers to formulate good and reliable policies, which could

not have been done with missing or incomplete values of economic variables.
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