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Twelve different families of cumulative distributions that are used to 

model real life data were introduced by Burr (1942). Burr III 

distribution is among these families of cumulative distributions.  In this 

work, a four-parameter distribution is introduced to model real life 

scenarios called Weibull-Burr III distribution. The limiting behavior of 

the proposed distribution, hazard function, moments, skewness, kurtosis 

and quantile function is investigated; order statistics and entropy are 

also derived. The method of Maximum Likelihood Estimation technique 

was used in estimating the parameters of the proposed distribution. To 

prove the flexibility and performance of the distribution and Weibull-G 

family of distributions, censored and uncensored data sets are applied. 

The results suggest that the new compound distribution fit the real data 

and perform much better than its competitors for both censored and 

uncensored data. 

Keywords: Rényi Entropy, Weibull-Burr type III Distribution, Weibull-
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1.0 Introduction 

Lifetime data can be modelled using several existing distributions. 

However, some of these lifetime data do not  follow  these  existing  

distributions  or  are  inappropriately  described  by  them.  Hence, the 

need to develop distributions that could better describes some of these 

phenomena and provide greater flexibility in the modelling of lifetime 

data than the baseline distributions. Therefore, many distributions have 

been developed and studied by many researchers. These include: An 

extended Lomax distribution by Lemonte and Cordeiro (2011), Beta-

Burr X by Merovci et al. (2016), Beta-Normal by Eugene et al. (2002), 

Beta-Nakagami by Olanrewaju and Kazeem (2013), Kumaraswamy- 

Burr III by Behairy et al. (2016), Kumaraswamy-Paretor by 

Bourguignon et al. (2013), new Weibull-Paretor  by Nasiru and 
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Luguterah (2015), Transmuted Lomax Distribution by Ashour and 

Eltehiwy (2013), Transmuted new generalized Weibull by Khan et al. 

(2016), Weibull-exponential by Oguntunde et al. (2015), Weibull-

Paretor by Alzaatreh et al. (2013), Weibull-Rayleigh by Merovci and 

Elbatal (2015), and many more. 

In the last few years, different classes of the Weibull Generalized family 

of distributions have been proposed and studied by several researchers. 

These include: Alzaatreh et al. (2013), Bourguignon et al. (2014) and 

Nasiru and Luguterah (2015). The objective of this paper is to introduce 

a new compound distribution called the Weibull-Burr III distribution, 

study some statistical properties of the new distribution 

comprehensively, use MLE method to estimate the parameters of the 

proposed distribution and finally to use censored and uncensored 

survival data sets in fitting the new distribution and some of the existing 

Weibull-G family of distributions so as to compare the performances of 

the Weibull-G family of distributions.  

2.0 Literature Review 

2.1 Empirical literature 

Alzaatreh et al. (2013) proposed a distribution called Weibull-Paretor, as 

a special case of the Weibull-G family. Statistical and mathematical 

properties of this distribution studied include; moments, moment 

generating function, hazard function and Shannon entropy. It was shown 

that the distribution is unimodal and the shape of the distribution can 

either be positively or negatively skewed. Modified Maximum 

Likelihood Estimation was used for the estimation of the parameters of 

the distribution. 

Bourguignon et al. (2013) extended the two-parameter Paretor 

distribution by introducing two shape parameters. This is done by taking 

the baseline cumulative distribution of the generalized family of 

Kumaraswamy distribution to be the cumulative distribution of Paretor 

distribution. Detailed mathematical properties of the distribution were 

provided and method of Maximum Likelihood was applied in estimating 

the parameters of the distribution. It was further shown that the 

Kumaraswamy-Paretor distribution is superior to its sub-models when 

real data set is used in fitting these distributions.  
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Olanrewaju and Kazeem (2013) developed the Beta-Nakagami 

distribution using the link function of the Beta generalized distribution. 

Statistical properties of the Beta-Nakagami distribution such as the 

asymptotic behavior, moments, moment generating function among 

others were investigated. The parameters of this distribution were 

estimated using the Maximum Likelihood Method. Real data was used to 

fit the Beta-Nakagami distribution and Nakagami distribution. It was 

found that Beta-Nakagami distribution apart from being more flexible 

has better representation of data than Nakagami distribution. 

A three-parameter distribution referred to as Weibull-Rayleigh 

distribution was studied by Merovci and Elbatal (2015).  This 

distribution was proposed using the logit of Weibull-G proposed by 

Bourguignon et al. (2014). Like other researchers, different 

mathematical and statistical properties of the distribution were provided. 

The parameters of the distribution were estimated using both the least 

square estimation method and MLE. Comparison of the distribution with 

other distributions such as Beta-Weibull, Exponentiated-Weibull and 

Weibull distributions reveal that the Weibull-Rayleigh distribution is a 

strong competitor for fitting real life data.  

Another three-parameter distribution called Weibull-exponential was 

proposed by Oguntunde et al. (2015) using the link function of the 

Weibull generalized family. Explicit expressions for some basic 

mathematical properties like moments, moment generating function, 

reliability, limiting behavior and order statistics of the distribution were 

derived. Like most researchers, MLE was used in estimating the 

parameters of the distribution. It was shown that Weibull-exponential is 

more useful as a life testing model than the exponential distribution.  

Nasiru and Luguterah (2015) proposed a new distribution called new 

Weibull-Paretor distribution. The distribution was called new Weibull-

Paretor because Alzaatreh et al. (2013) had already defined Weibull-

Paretor distribution using the generator proposed by Alzaatreh et al. 

(2013). Nasiru and Luguterah (2015) studied various properties of the 

new Weibull-Paretor distribution and used MLE to estimate the 

parameters of the distribution. Application of real data set to the new 

Weibull-Paretor distribution revealed that the distribution provides a 

better fit in modelling real life data.  

Behairy et al. (2016) extended the Burr III distribution using the logit of 

Kumaraswamy-G family. Explicit expressions for the  moments, density 
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functions  of  the  order statistics, Rényi  entropy, quantiles  and moment  

generating  function were provided. MLE method was applied under 

Type II censored sample to estimate the parameters of the model and 

Monte Carlo simulation was performed to investigate the precision of the 

estimates. 

Beta-Burr X distribution was developed and studied by Merovci et al. 

(2016). Comprhensive mathematical properties of this distribution were 

provided. Also, asymptotic confidence intervals for the parameters of the 

Beta-Burr X distribution were derived from the Fisher Information 

Matrix. Furthermore, simulation study was conducted to assess the 

performance of the model. Model fit of the distribution indicates that 

Beta-Burr X serves as a good alternative model for modelling positive 

real data in many areas. 

2.2 Theoretical Framework (Weibull-G family of Distributions) 

Let X be a random variable from the Weibull distribution with 

parameters α and β, then the cumulative distribution function (cdf) and 

probability density function (pdf) of the Weibull generalized family of 

distribution (Weibull-G) due to Alzaatreh et al. is given by: 

 
  log 1

1

0

G x
xF x x e dx
 

 
            (1) 
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     (2) 

for𝑥 > 0, 𝛼, 𝛽 > 0 

where    1G x G x  ; and  g x and  G x  are the pdf and cdf of any 

baseline distribution and in our case the Burr type III distribution. 

Another generator of the Weibull generalized family of distributions is 

the one proposed by Bourguignon et al. (2014). The cdf and pdf of the 

Weibull generalized family of distribution due to Bourguignon et al. 

(2014) are defined by: 
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  1

0
exp

G x
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    CBN Journal of Applied Statistics Vol. 8 No. 2 (December, 2017)            95 

 

   
  

  
 

 

1

1
exp

G x G x
f x g x

G xG x




 





  
    
    

       (4) 

where  𝑥 > 0, 𝛼 > 0, 𝛽 > 0 

A year after this generator was proposed, another form of Weibull 

generalized family of distribution was proposed by Nasiru and 

Luguterah (2015). The cdf and pdf due to Nasiru and Luguterah (2015) 

are given by: 

    
1
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        (6) 

where 𝑥 > 0, 𝛼 > 0, 𝛽 > 0 

In this paper, we intend to develop a four-parameter model called 

Weibull-Burr III distribution using the Weibull generator proposed by 

Bourguignon et al. (2014). This generator has been used by other 

researchers to develop compound distributions such as: Weibull-

Rayleigh distribution by Merovci and Elbatal (2015), Weibull-

exponential distribution by Oguntunde et al. (2015) and so on. 

3.0  Methodology 

3.1  The Proposed Distribution 

Our baseline distribution, the Burr III distribution with parameters 

(𝜆, 𝛾) has its cdf and pdf given by: 

 ( ; , ) 1G x x


 


            (7) 

and 

     
 11

; , 1g x x x
   

                         (8) 

respectively. Also, 𝜆 > 0 and 𝛾 > 0 are shape parameters. 

Using the generator proposed by Bourguignon et al. (2014) the cdf of the 

proposed Weibull-Burr III distribution is given by: 
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and its corresponding pdf is given by: 
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where 0, 0, 0, 0 0x and        . In this distribution,  is the 

scale parameter while ,  and  are the shape parameters. 

3.2 Investigation of the Proposed Distribution for a Proper PDF 

A pdf is said to be proper if  

∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1.  

To show that the proposed distribution is a proper pdf, we proceed as 

follows: 
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Then  
0
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
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Following the same procedure by letting m u    , the integral 

becomes:  
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Figure 1a: Graph of the Three Distributions Weibull, Burr III and 

Weibull-Burr III   (α, λ and γ = shape and β= scale parameters)  

 

 
Figure 1b: Graph of the Three Distributions Weibull, Burr III and 

Weibull-Burr III   (α, λ and γ = shape and β= scale parameters) 
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Figure 1c: Graph of the Three Distributions Weibull, Burr III and 

Weibull-Burr III   (α, λ and γ = shape and β= scale parameters) 

 

Figure 1d: Graph of the Three Distributions Weibull, Burr III and 

Weibull-Burr III   (α, λ and γ = shape and β= scale parameters) 

Hence, the Weibull-Burr III distribution is a proper pdf. The graph of the 

pdf of Weibull-Burr III, Weibull and Burr III with different parameter 

values are given in Fig 1a – 1d. The proposed distribution appears to be 

much more flexible than the two parent distributions as can be glanced 

by varying the shape parameter values. 

3.3 Asymptotic Behavior 

We now investigate the asymptotic behavior of the Weibull-Burr III 

distribution as x tends to zero and as x tends to infinity. 
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Applying the same technique, it can easily be shown that  lim 0
x

f x
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 . It 

has been shown in the literature that, if  
0

lim 0
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 , and  lim 0
x

f x


 , 

then  f x has at least one mode (see Olanrewaju and Kazeem (2013) for 

more details). Hence, the Weibull-Burr III distribution has a mode. 

3.4 Hazard Function 

The hazard function which has an important application in survival 

(reliability) analysis is defined by: 
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Hence, the hazard function for Weibull-Burr III is given by: 
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                  (12) 

The hazard function is the probability of failure in an infinitesimally 

small time period between x and x x given that the subject has 

survived up to time x . The graph of the hazard function of Weibull-Burr 

III is shown in Fig 2a and 2b. 
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   Figure 2a: Hazard Function for the  Figure 2b: Hazard Function for the              

   Weibull- Weibull-Burr III (α, λ        Burr III (α, λ and γ = shape and β=     

and γ = shape and β= scale                 scale parameters) 

   parameters) 

   

3.5  Moments, Skewness and Kurtosis 

Moments can be used in studying some important properties such as 

dispersion, skewness and kurtosis of a distribution. Let Xbe a random 

variable from the Weibull-Burr III distribution, then the r
th

 moment of X 

is defined by: 
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Using Power Series expansion,  exp 1 1x
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can be written 

in the form: 
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where  . is the gamma function.  

Substituting (14) in (13) gives: 
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  1 1
1 1

1

00

1
1 1 1

1

j
j

j
r r j

j

E X x x x dx
j


 

   
   

   
   



     
   

  (15) 

0
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0.6

0.8

1
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HF(α=1, β=0.5, λ=1,ϒ=2)
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Since the limiting values of  1 x





 is between zero and one, as 𝑥 

tends to zero and infinity respectively, then using Binomial Series 

expansion equation (15) becomes: 

 
    

      
 

  1 1
1

, 0 0

1 1 2
1

1 1 1 2

j k j
k j

r r

j k

j
E X x x dx

j k j k

 
 

 







   
  



   
 

       
        (16) 

taking  
  1 1

1

0

1
k j

rx x dx
 

 


   

   , 

let  ,1 1 1
z

mz k j x  
 

  
  

   




     , then 

11
11

1

1
z

z
m

dx m dm
z





  
 

  
 

 

Hence,  

 
   2

1 1
1 1 11 1

1 1
1

0 0

1
1 1

r
r zk j

r z z z z zx x dx m m dm
z

  
   



 
      

  
 

   
 

     (17) 

Letting 
1

zu m , the integral in (17) becomes:    

1 1 1 1 1
1, 1

r r
B z

z z    

 
       

 
      (18) 

where  ., .B  is the beta function. 

Substituting (18) in (16), we obtain the r
th

 moment of Weibull-Burr III 

distribution as: 

 
    

      

1

, 0

1 1 2 1 1 1 1
1, 1

1 1 1 2

j k j

r

j k

j r r
E X B z

z zj k j k

 


   

 



     
        

         


The p
th

 central moment can easily be obtained from moment about the 

origin: 

   1

1

1 ' '
p

l lp

p l p l

l

C   



          (19) 

while the p
th

 cumulant of X is given by: 
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1
1

1

0

' '
p

p

p p l l p l

l

C   




 



          (20) 

From equation (20), 

 
2

2 2 1' '        

 
3

3 3 2 1 1' 3 ' ' 2 '          

     
2 2 4

4 4 3 1 2 1 2 1' 4 ' ' 12 ' ' 3 ' 6 '             

With these, the coefficients of skewness and kurtosis can easily be 

obtained as: 

 

3

3
2

2

Coefficient of skewness =



                  (21) 

4

2

2

Coefficient of kurtosis =



        (22) 

3.6  Quantile Function 

The quantile distribution is used in the generation of random realizations 

from a given distribution. The quantile function of Weibull-Burr III 

distribution is given by: 

   

1
1

1
1

1 1 1Q u n u












 
    

      
      

      (23) 

where u is a random number generated from uniform distribution with 

parameters 0 𝑎𝑛𝑑 1 

The median of Weibull-Burr III distribution can be obtained by 

substituting 𝑢 =
1

2
 in equation (23) which gives: 
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1
1

1

1
Median 1 2 1n











 
    

     
      

     (24) 

3.7  Order Statistics 

Let 1 2, ,..., nx x x  be independent random sample from a cumulative 

distribution function,  F x , with an associated probability density 

function,  f x . Then, the probability density function of the thi  order 

statistics,  i
x , is defined by: 

 
   

      
1

:

!
1

1 ! !

n ii

i n

n
f x f x F x F x

i n i



    
     (25)

 

Recall that the Binomial Series expansion of  1
n

x  is given by:  

 
 

 0

1 !
1

! !

k
n

n k

k

n
x x

n k k


 


  

Using this expansion, equation (25) can be written as 

 
 

   
   

1

:

0

1 !

1 ! ! !

k
n i

k i

i n

k

n
f x f x F x

i n i k k


 




     


     (26) 

and 

   
 

 
 

1
1

0

1 !
1 exp 1 1

1 ! !

i k
k i p

p

i k
F x p x

i k p p




  
  



                   
    (27) 

Substituting (10) and (27) in (26) yields the thi order statistics for the 

Weibull-Burr III distribution given by: 

   
1

:

0 0

n i i k

i n i i

k p

f x f x
  

 

                    (28) 

where 
   

       

1 ! 1 !

1 ! ! 1 ! ! ! 1

p k

i

n i k

i n i k i k p p k p



  


      

 ;     
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 if x is the pdf of Weibull-Burr III with parameters   1 , , ,p    . 

Using equation (28), several mathematical properties of Weibull-Burr III 

order statistics such as moments, ordinary moments, moment generating 

function, factorial moments and so on can be determined. For instance, 

the S
th

 moment of :i nX  can easily be obtain from the expression in (19) 

which is the moment of Weibull-Burr III with new parameters 

  1 , , ,p    . 

3.8 Rényi Entropy 

Numerous entropies such as Rényi entropy, Shannon entropy, etc. have 

been developed and used in various disciplines and contexts. The 

entropy of a random variable, X, denoted by  RI r is defined as a 

measure of the uncertainty about the outcome of a random experiment. 

Let X be a random variable with pdf, 𝑓(𝑥), then the Rényi entropy is 

defined by: 

    
1

n
1

r

RI r f x dx
r

 
     

for 0r  and 1r   

        
 

  
   
1

1

1

0 0

1
exp 1 1

1 1

r

r r r

r

x
f x dx x r x dx

x





 




 

 
  

  






           
 

     (29) 

Using Power Series expansion,  exp 1 1r x






        

can be 

written in the form: 

 
 

0

1
1 1

!

j j j j

j

r
x

j





 





   
  

        (30) 

and substituting (30) in (29) yields: 

 
     

 
  

 
1

0 0

1
1 1 1

!

j j j r j r
r j rr r

j

r
x x x dx

j

     



   

      




   

 

following the same procedure as in section 2.5, we obtain: 
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    
   

 
 

, 00

1 !
1,

! ! !

j k j j
r r

j k

r j r r
f x dx B z r r r r

r j r k k j

  
    

  

 



  
     

  


   (31) 

Hence, based on the definition of Rényi entropy, we have: 

   
   

 
 

, 0

1 !1
n 1,

1 ! ! !

j k j j
r

R

j k

r j r r
I r B z r r r r

r r j r k k j

  
    

  






   
      

     
  

3.9 Maximum Likelihood Estimates of the Parameters of 

Weibull-Burr III Distribution 

Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 denote a random sample drawn from the Weibull-Burr 

III distribution with parameters 𝛼, 𝛽, 𝜆 𝑎𝑛𝑑 𝛾 defined in equation (10). 

The likelihood function, 𝐿(𝑥;  𝛼, 𝛽, 𝜆, 𝛾) is defined to be the joint density 

function of the random variables,𝑥1, 𝑥2, ⋯ , 𝑥𝑛. That is, 

 
1

; , , , ( ; , , , )
n

i

i

L x f x       



       (32)

 

Any statistic value that maximizes the likelihood function, 

𝐿(𝑥1, 𝑥2, ⋯ , 𝑥𝑛;  𝛼, 𝛽, 𝜆, 𝛾) , is referred to as the maximum likelihood 

estimator. The likelihood and log likelihood of the Weibull-Burr III 

distribution are given by: 

     
 

  
 

1

1

1
1

1
; , , , exp 1 1

1 1

n
i

i i

i
i

x
L x x x

x





 




     

 



  






           


   (33) 

and 

   

         

1

1 1 1

; , , , log log log log 1 1

1 log( ) 1 log 1 1 1 1

n

i

i

n n n

i i i

i i i

x n n n n x

x x x







 

        

  







 

  

        
  

        
  



  
   (34) 

respectively. To obtain the Maximum Likelihood Estimators of the 

parameters of Weibull-Burr III distribution, we differentiate (34) 

partially with respect to the parameters and equate to zero. This gives: 

 
 

1

; , , ,
1 1

n

i

i

x n
x





   

 






     
  


                 (35) 
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 
   

   

1 1

1 1

; , , ,
1 1 log 1 1

log 1 1 1

n n

i i

i i

n n

i i

i i

x n
x x

x x


 

 


 

   

 




 

 


 

 

          
      

    
  

 

 

   (36) 

   

   
1

1
1

; , , , log

1 1 1

n
i i

i
i i

x x xn

x x




 

 

   


 






 


 

    
  

     (37) 

     

 
1

1

1 log 1; , , ,

1 1

n
i i

i
i

x xx n

x


 






   


 

 




 
 

   
  

      (38) 

Solving for 𝛼, 𝛽, 𝜆 𝑎𝑛𝑑 𝛾, we have: 

 
1

1 1
n

i

i

n

x













  
  


                   (39) 

       
1 1 1 1

log 1 1 1 log 1 1 1 1
n n n n

i i i i

i i i i

n

x x x x


  
   







   

   


             
          

   

   (40) 

 

   
1

1
1

log

1 1 1

n
i i

i
i i

n

x x

x x




 

 









 



   
  



      (41) 

   

 
1

1

1 log 1

1 1

n
i i

i
i

n

x x

x


 










 




 
 

  
  



       (42) 

Solving equations (39), (40), (41) and (42) algebraically may be 

intractable. To avoid this problem, one can obtain the MLEs of 

𝛼̂, 𝛽̂, 𝜆̂ 𝑎𝑛𝑑 𝛾  numerically by applying any of the following methods: 

Newton–Raphson, Broyden–Fletcher–Goldfarb–Shanno (BFGS), 

Limited Memory quasi-Newton code for Bound-constrained 

optimization (L-BFGS-B), Berndt–Hall–Hall–Hausman (BHHH) and 

Simulated-Annealing (SANN). The Newton-Raphson algorithm uses 
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numerical or analytical gradients and Hessians while BFGS, L-BFGS-B 

and BHHH algorithms use only numerical or analytical gradients. On the 

other hand, SANN algorithms use neither gradients nor Hessians but it 

only uses function values. The Information Matrix of the parameters of 

the Weibull-Burr III distribution can be derived by differentiating 

equations (35), (36), (37) and (38) in a situation where we need to obtain 

interval estimates and test on model parameters.  

3.10 Data Analysis Procedures 

We shall use both the kernel based density estimation technique and the 

classical Kolmogrov-Smirnov two-sample test procedure to further 

elucidate on the efficacy of the Weibull-Burr III distribution during the 

data analysis of real life data. We shall discuss briefly the two techniques 

here. 

3.10.1  The Kernel-based Density Estimation 

An estimator of the probability density function 𝑓(𝑥) using the kernel 

approach is given by: 

 

1

1
, 0

n
i

i

x x
f k x

n
x

 

 
  

 
      (43) 

where  .k is the kernel,  is the smoothing parameter and n is the 

sample size of the real life data. A suitable kernel function,  .k is the 

Epanechnikov (1969) kernel. This kernel is defined by: 

 
 20.75 1 0.2

5
5

0

r
if r

k r

elsewhere

 
 

 



    (44) 

and the parameter,  , determines the smoothness of the estimator. 

Increasing  increases the bias but smoothes the estimates. In the spirit 

of Fiksel (1988), we have used computational and simulation studies to 

suggest taking the value of  as: 

5.5



         (45) 

where is the mean of the real life data, as appropriate. 

The kernel in equation (44) is symmetric as well as a probability density. 

This means that the estimator𝑓(𝑥)  given in equation (43) will be a 
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probability density function. The estimated Weibull-Burr III, Weibull 

and Burr III probability density functions will be compared graphically 

with𝑓(𝑥). 

3.10.2 Kolmogrov-Simirnov Two-Sample Test 

Consider the universe consisting of two populations which are called X 

and Y populations, with cumulative density functions denoted by 𝐹𝑋and 

𝐹𝑌 , respectively. We have a random sample of size 𝑚  from the 𝑋 

population and another random sample of size 𝑛 drawn independently 

from population 𝑌, i.e 

1 2, , , mX X X  and 1 2, , , nY Y Y . 

 Usually, the hypothesis of interest is that the two samples are drawn 

from identical populations: 

   0 : Y XH F x F x x   

The order statistic corresponding to the two random samples from 

continuous populations,𝐹𝑋 and 𝐹𝑌, are respectively: 

     1 2
, , ,

m
X X X  and      1 2

, , ,
n

Y Y Y  

Their respective empirical distribution functions denoted by  mS x and 

 nS x are defined as: 

 

 

 

1

1

0

1, 2, , 1

1

m k k

m

if x X

k
S x if X x X k m

m

if x X







    





   

and 

 

 

 

1

1

0

1, 2, , 1

1

n k k

n

if x Y

k
S x if Y x Y k n

n

if x Y







    





   

In a combined ordered arrangement of the N n m  sample 

observations,  mS x and  nS x are the respective proportions of X and 

Y observations which do not exceed the specified value, x . If the null 
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hypothesis is true, the population distributions are identical. The two-

sided Kolmogrov-Smirnov two-sample test criterion, 
,m nD , is based on 

the maximum absolute difference between the two empirical 

distributions, 

   ,m n m n
x

D Sup S x S x    

and the rejection region is the upper tail, defined by: 

,m nD C   

where 

 , 0/m nP D C H    

For m and n large, right-tail critical values based on the asymptotic 

distribution can be calculated as: 

 

4.0  Data Analysis  

Here, an application of Weibull-Burr III distribution is provided by 

comparing the results of the fits of this model with that of other weibull-

G family of distributions. Two data sets will be used in order to make the 

comparison. 

The first data set is the uncensored survival data that was previously 

analyzed by Lee and Wang (2003), Lemonte and Cordeiro (2011) and 

Luz et al. (2012). This data set will be used to compare between fits of 

the Weibull-Burr III distribution with that of Weibull, Burr III, Weibull-

Exponential, Weibull-Paretor, New Weibull-Paretor and Wiebull-

Rayleigh distributions.The data presented in Table 1 (see Appendix), 

contains the remission times (in months) of a random sample of 128 

bladder cancer patients. 

 𝛼 0.2 0.1 0.05 0.01 

𝐶𝛼  
1.07 𝑁 𝑛𝑚  1.22 𝑁 𝑛𝑚  1.36 𝑁 𝑛𝑚  1.63 𝑁 𝑛𝑚   
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Table 3: Maximum Likelihood Estimates (MLE), Log-likelihood, AIC, 

BIC and CAIC for uncensored data fitted to Weibull-G family 

distributions 

 

The method of maximum likelihood is used to fit the proposed Weibull-

Burr III distribution, Weibull distribution, Burr III distribution, Weibull-

Exponential distribution, Weibull-Paretor distribution, New Weibull-

Paretor distribution and Weibull-Rayleigh distribution to these data. 

Criteria such as Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Consistent Akaike Information 

Criterion (CAIC) are used to compare the distribution models.  

The distribution model with the smallest AIC, BIC and CAIC values is 

considered to be the best distribution.  

Table 3 shows MLEs of the parameters for each of the fitted 

distributions and the statistics: AIC, BIC and CAIC. The results from the 

Weibull-G family of distributions showed that, the proposed Weibull-

Burr III distribution has the least AIC, BIC and CAIC values. Hence, 

this is an indication that Weibull-Burr III distribution is a very strong 

Model 
MLE 

Log-likelihood AIC BIC CAIC 
Parameters Estimates 

Weibull α 0.09225 -414.1 832.2 837.9 832.3 

  β 1.05303         

Burr III λ 1.03396 -426.7 857.4 857.4 857.5 

  γ 4.21689         

Weibull-Burr III 
α 1.38023 -339.7 687.5 698.9 687.8 

β 6.67205         

  λ 0.13683         

  γ 1.30411         

Weibull-
Exponential 

α 4.66306 -419.3 844.7 853.2 844.8 

β 0.86469         

  λ 0.01496         

Weibull-
Paretor 

α 0.0038 -411.8 829.6 838.2 829.8 

β 0.1287         

  λ 7.7391         

New Weibull-
Paretor 

α 0.2288 -414.1 834.2 842.7 834.4 

β 1.0479         

  λ 2.3398         

Weibull-
Rayleigh 

α 0.9113 -505.8 1017.6 1026.2 1017.8 

β 0.4963         

  λ 0.0013         
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competitor to other distributions used here for fitting the data set. We 

have also estimated the unknown probability density function,  f x of 

the lifetime data using the kernel density approach. The plots of the 

 f x  for the lifetime data and the estimated density functions of the 

same data set using the Weibull-Burr III distribution, Weibull 

distribution and Burr III distribution are presented in Figure 3. The 

estimated density function from the proposed distribution closely mimics 

the estimated kernel based density function than the other two 

distributions. Also, having estimated the Weibull-Burr III parameters 

from the uncensored data, we employ the quantile function to generate a 

sample of size 128 observations. This sample is presented in Table 2.  

We now test the null hypothesis that the uncensored remission time data 

and the sample drawn from the fitted Weibull-Burr III distribution are 

indeed from the same distribution. The computed Kolmogrov-Smirnov 

statistic based on the two empirical distribution functions,  mS x and

 nS x (shown in Figure 4) is 

   128,128 m n
x

D Sup S x S x     

0.1094 . 

We only reject the null hypothesis that the uncensored remission data 

and the sample data drawn from the proposed distribution are from the 

same distribution if 128,128D C
with 

 128,128 0.01P D C 
. Since 

128,128 0.1094D 
 is less than the critical value of 

0.2038C  at the 1% 

level of significance, this suggests that we have no reason but fail to 

reject the hypothesis that the two dataset are from the same distribution. 

The second data set is the survival times (in months) of a random sample 

of 101 patients with advanced acute myelogenous leukemia that received 

either an autologous bone marrow transplant or an allogeneic bone 

marrow transplant. The data is given in Table 4 (see Appendix). 
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Figure 3: Estimated Probability 

Density Function for the 

Remission times data 

 

Figure 4: Kolmogrov-Smirnov 

two sample test: Graph of the 

empirical distribution Functions 

Also in this case, the method of maximum likelihood is used to compare 

between the fits of the proposed Weibull-Burr III distribution with some 

of the Weibull-G family distributions. Table 5 shows the MLEs of the 

parameters for each of the fitted distributions together with the AIC and 

BIC statistics. This result revealed that the proposed Weibull-Burr III 

distribution is a very strong competitor compared to other distributions 

since it is having the least AIC and BIC values. 

 Table 5: Maximum Likelihood Estimates (MLE), Log-likelihood, AIC  

 and BIC for censored data fitted to Weibull-G family distributions 
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  Parameters Estimates     

Weibull-Burr 

III 

α 1.4267 -219.7 447.6 458 

β 0.5705       

  λ 0.4878       

  γ 7.9638       

Weibull-

Exponential 

α 25.5475 -880.4 1766.9 1774.7 

β 6.8616       

λ 0.0096       

Weibull-

Paretor 

α 3.1477 -223 452 459.8 

β 0.1184       

  λ 0.0155       

New Weibull 

-Paretor 

α 0.5112 -222.4 450.9 458.7 

β 0.6752       

λ 16.0222       

Weibull 

Rayleigh 

α 3.3369 -599.8 1205.7 1213.5 

β 0.0022       

  λ 2.2212       
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5.0  Conclusions  

In this paper, we proposed a new distribution which generalizes the Burr 

III distribution. The distribution is named Weibull-Burr III distribution. 

The pdf, cdf, limit of pdf and hazard function were derived. 

Additionally, some of the mathematical and statistical properties like 

moments, skewness, kurtosis, order statistics and entropy were also 

derived. The model parameters were estimated by using the maximum 

likelihood estimation procedure. Finally, we fit the proposed model to 

censored and uncensored data and compared it with estimates from other 

Weibull-G family distributions. The new distribution was found to 

provide a better fit than its competitors. The classical Kolmogrov-

Simirnov two-sample test statistic, also confirmed that the remission data 

could have been drawn from the new proposed distribution. 
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Appendix 

Table 1: Remission times (in Months)    Table 2: Random sample of  

Random Sample of 128 Bladder             size 128  drawn from Weibull-  

Cancer Patients                                       Distribution: WB (α=1.38023,  

                                                                                               β=6.67205, λ=0.13683,     

γ=1.30411) 

              
Table 4: Survival times (in months)  

of sample of 101 patients with  

Advanced Acute Myelogenous leukemia 

 

0.08 9.22 2.62 15.96 5.49 5.85 12.07 

2.09 13.80 3.82 36.66 7.66 8.26 21.73 

3.48 25.74 5.32 1.05 11.25 11.98 2.07 

4.87 0.50 7.32 2.69 17.14 19.13 3.36 

6.94 2.46 10.06 4.23 79.05 1.76 6.93 

8.66 3.64 14.77 5.41 1.35 3.25 8.65 

13.11 5.09 32.15 7.62 2.87 4.50 12.63 

23.63 7.26 2.64 10.75 5.62 6.25 22.69 

0.20 9.47 3.88 16.62 7.87 8.37   

2.23 14.24 5.32 43.01 11.64 12.02   

3.52 25.82 7.39 1.19 17.36 2.02   

4.98 0.51 10.34 2.75 1.40 3.31   

6.97 2.54 14.83 4.26 3.02 4.51   

9.02 3.70 34.26 5.41 4.34 6.54   

13.29 5.17 0.90 7.63 5.71 8.53   

0.40 7.28 2.69 17.12 7.93 12.03   

2.26 9.74 4.18 46.12 11.79 20.28   

3.57 14.76 5.34 1.26 18.10 2.02   

5.06 26.31 7.59 2.83 1.46 3.36   

7.09 0.81 10.66 4.33 4.40 6.76   

 

0.00 8.91 3.89 13.99 6.50 1.30 23.02 

0.09 9.13 3.89 14.25 6.60 1.32 26.37 

0.12 9.34 3.92 14.38 6.72 1.54 28.15 

0.20 9.40 4.04 14.76 6.76 1.61 29.01 

0.26 9.62 4.21 14.95 6.83 1.70 37.86 

0.33 10.19 4.47 15.00 6.84 1.75 41.20 

0.45 10.44 4.53 16.57 7.12 1.88 51.51 

0.58 10.47 4.83 16.79 7.52 1.98 58.36 

0.59 10.75 5.27 16.85 7.56 2.05   

0.65 10.76 5.31 17.23 7.57 2.14   

0.73 11.10 5.46 17.36 7.74 2.24   

0.76 11.17 5.56 17.45 7.87 2.25   

0.83 11.22 5.57 17.86 7.88 2.31   

0.84 11.42 5.63 18.00 7.95 2.46   

0.87 11.94 5.63 18.56 8.38 2.70   

0.94 12.10 5.65 19.03 8.43 3.12   

0.96 12.58 5.71 19.30 8.59 3.26   

0.97 12.69 6.06 20.14 8.63 3.35   

0.98 13.00 6.07 21.02 8.69 3.49   

1.04 13.15 6.30 22.74 8.90 3.74   

 

0.03 8.882 41.118
+
 6.151 17.303

+
 

0.493 9.145
+
 45.033

+
 6.217 17.664

+
 

0.855 11.48 46.053
+
 6.447

+
 18.092 

1.184 11.513 46.941
+
 8.651 18.092

+
 

1.283 12.105
+
 48.289

+
 8.717 18.75

+
 

1.48 12.796 57.401
+
 9.441

+
 20.625

+
 

1.776 12.993
+
 58.322

+
 10.329 23.158 

2.138 13.849
+
 60.625

+
 11.48 27.73

+
 

2.5 16.612
+
 0.658 12.007 31.184

+
 

2.763 17.138
+
 0.822 12.007

+
 32.434

+
 

2.993 20.066 1.414 12.237 35.921
+
 

3.224 20.329
+
 2.5 12.401

+
 42.237

+
 

3.421 22.368
+
 3.322 13.059

+
 44.638

+
 

4.178 26.776
+
 3.816 14.474

+
 46.48

+
 

4.441
+
 28.717

+
 4.737 15

+
 47.467

+
 

5.691 28.717
+
 4.836

+
 15.461 48.322

+
 

5.855
+
 32.928

+
 4.934 15.757 56.086 

6.941
+
 33.783

+
 5.033 16.48   

6.941 34.211
+
 5.757 16.711   

7.993
+
 34.77

+
 5.855 17.204

+
   

8.882 39.539
+
 5.987 17.237   

 


